20/©

DIGITAL
HEALTH

An introduction and
resource guide for
QEIEENS

March 2025

‘International
. Pharmaceutical
: Federation




Copyright 2025 International Pharmaceutical Federation (FIP)

International Pharmaceutical Federation (FIP)
Andries Bickerweg 5

2517 JP The Hague

The Netherlands

www.fip.org

All rights reserved. No part of this publication may be stored in any retrieval system or transcribed by any form or
means — electronic, mechanical, recording, or otherwise without citation of the source. FIP shall not be held liable for
any damages incurred resulting from the use of any data and information from this report. All measures have been
taken to ensure accuracy of the data and information presented in this report.

Editor:
Dr Whitley Yi Chair of the FIP Technology Advisory Group Artificial Intelligence Working Group

Co-editors:

Dr Ardalan Mirzaei, Asia Pacific Representative in the FIP Health and Medicines Information Section
Mr Brent Sin Hidge, FIP TAG Artificial Intelligence Working Group

Dr Mariana Guia, FIP TAG Artificial Intelligence Working Group

Dr Paul Voigt, FIP TAG Artificial Intelligence Working Group

Recommended citation:
International Pharmaceutical Federation (FIP). An Artificial Intelligence Toolkit for Pharmacy: An introduction and
resource guide for pharmacists. The Hague: International Pharmaceutical Federation; 2025



| p3

ACKNOWIEAZEMENES...ccuuiiiiiiiiiiiiiiiiiiiiriiirriirreaestrrsesstrrsesessrassssstesssssstesssssssennssssrensssssnennsssns 4
1 EXECULIVE SUMMAIY ceuuiiieiiiiiiiiiieiiieeiiirneiiraeisisesimnsisrasssrssssissssssssssrssssrsssssssssssssssssssssssssssasssses 5
P - i ot SN 6
2.1 Purpose of the toOolKit.......cciiiuiiiiiiuiiiiiiiii e rreasss s sasssssssasssssennsssssennnes 6
2.2 Al & the FIP Development GOals........ccivuuiiiiiinniiiiiiuiiiiemiinieniiemiiemesisssssssssssses 7

S - 7= 1] 144 o T 3 o R 8
3.1  The fundamentals Of Al......... it rreeereeereanerenseerassrnsessnsserensesensessnssessssssnssenanns 8
3.11 LEarNiNg STYIES fOI Al ...ttt sttt st ettt e b e st e bt e st e bt e st e e s aeeeate e s beeeneenes 9
3.1.2 TYPES OF AL TOOIS ..ottt ettt st e b e et e e bt e s b e e bt e s b e e sseesabeesabeeneesneeenbeesnneenne 10

3.2  Assessing the performance Of Al ..... ... iiiiiieeiiiieiiiiiiiireiereeiereeerenserenseeresseressessnsessassssnssssnsssnen 11
3.21 Why Measure PerfOrmManCe? ... oottt ettt sttt st e e sat e e sbe e saee s b e e sabeebeesaneenneenanes 11
3.2.2 How to be transparent, accountable, and build trust. ........ccccooveeiiiiiiiin e 11

3.3  Performance metrics for classification models .........cccovieiiiiiiiiiiiiiiiiii e 14

4  Ethical conSiderations .........cccceiiiiieniiiiieeiiiiiniiiiiisienstssstsssssssnnes 16
4.1 Creating Al that is trUSTWOIrtRY .......cieeiiiiiiiiiiiii ettt reeeerenerea e renserensesensesensserensesensenenne 16
4.2 The ethical considerations of applying Al in healthcare.......c.cccceveiirieiiieeririiiiececeecereeereenenenn 17
42.1 o8 ] Y Tor= Y I YU =S RUSS 17
4.2.2 Mitigation strategy for the ethical deployment of Al in healthcare.........ccocceeeviiiecis i, 18

5 I1SO regulations and COMPIIANCE.......cccuciieeieieenertenieteeieteeerenneeteenereaseerasessasessassssassessnsessnnnns 21
5.1 General Al regUIatioN........cciiieeiiiiiiccirice et rrree e e s e s st na e s s e nas e s e e nasssseenassssesnnsssnanns 21
5.2  Data protection and privacy in general in healthcare..........ccccuuiiiiieiiiiiiiiiriccrrecerreeeee, 21
5.2.1 [ [0 Taa T T BT ol T Y =T Y SRS 22
5.2.2 Clinical validation and reproducibility of the algorithms..........cccciveiiiiecie e, 22
5.2.3 Interoperability STANAANAS. ......c..eiiiiee e e e e e s e e s e e e et e e e e nte e e e naaeeraeeeas 23
5.2.4 (@] o= gy Yol UL gV 4 g L= U Y-S 23
5.2.5 P aYolol =131 o1 | T VA= T Te I Ta ol [V 1] V71 Y S 23
5.2.6 Considerations for the fULUME........cccueei i e e e e e sab e e e rae e e enaeas 23

6 Common barriers to iMpPlemMeNtatioNn......cccciveeiieiiieeieiierereeeeteerereeneeteneereaneeresseresesensessnnens 24
6.1  AlZOrithmicC Bias....ccuuceiiieeeiiiieiiiiiitiecririierrrneeereennseesrrnnsessennsssssennsssssenasssssennssssesnsssssesnnsssnennn 24
307 2 (¥ T T 1= N 0 | PN 25
L3 I @ V1T o 1 [y V- IN 25
6.3.1 Additional barriers to KEEP iN MING: ......ciciiiiee e e e e e s e e e b e e e sateeeeneaeesnreeens 26

6.4 Selecting the right tool by establishing the pros and cons .........ccoevreiiirirciirirrccrrrr s 26
6.4.1 Weighing the pros and cons between MOEIS.........ccccviiiiiieeiiie i e e e aee e e rareeenes 27

7 Implementation checklist ... e s re e s e n s s s nnans 33
8 Training and development of competence in Al.........coiiieeiiiiieiiiiieeiiniinccnieencesreeeseessennns 34
8.1 What do pharmacists need to know about Al?............coereeiriiieicirerecrrerecereeeaee s e ena e s eenasaenenns 34
8.2 Knowledge and sKills fOr Al .........oceeueiiiiiiiriiieerrrecerereee e s e reeee s e s e s e e nas e seennsseseennsssseennnsnenns 35

L B 101 =1 =Y 3 Vo= 36

Annex - Glossary of terms used in this toolKit .......c.ccoeiiiiiiiiiiiiiiir 39



p4 |

FIP expresses gratitude and appreciation to all the authors who co-developed the toolkit. The authors are listed below:

e  Whitley Yi, PharmD, BCPS, FIP TAG Artificial Intelligence Working Group Chair, FIP Technology Advisory Group
Member, Director of Pharmacy and Member Services, Well, Adjunct Lecturer, University of Colorado Skaggs
School of Pharmacy and Pharmaceutical Sciences, USA

e Brent Sin Hidge, BPharm(NMU), FIP TAG Artificial Intelligence Working Group; Pharmaceutical Society of
South Africa National Executive Committee member; South African Association of Hospital and Institutional
Pharmacists Western Cape Chairman; Hospital Pharmacist, Netcare Blaauwberg Hospital, South Africa

e  Bruno Macedo, FIP TAG Artificial Intelligence Working Group, CEO and Founder of MedFacts, Program
Manager, Calouste Gulbenkian Foundation, Portugal

e Claudia Rijcken, FIP TAG Artificial Intelligence Working Group, FIP Technology Advisory Group Member, CSO
and Founder of Pharmi, Lecturer at Utrecht University School of Pharmacy, The Netherlands

e Florencia Ojeda, Systems Engineer, MS in Artificial Intelligence, FIP TAG Artificial Intelligence Working Group
Member, Uruguay

e Joanna Klopotowska, FIP TAG Artificial Intelligence Working Group, Assistant Professor and Principal
Investigator, Amsterdam UMC Academic Medical Center, The Netherlands

e  Mariana Guia, PharmD; FIP TAG Artificial Intelligence Working Group; Health Solutions Specialist, Portuguese
National Association of Pharmacies, Portugal

e  Markus Manner, FIP TAG Artificial Intelligence Working Group, Development Manager, Suomen
Apteekkariliitto, Association of Finnish Pharmacies, Finland

e  Martin KondZza, MPharm, PhD, FIP TAG Artificial Intelligence Working Group, Assistant Professor, University
of Mostar, Bosnia and Herzegovina / Pharmaceutical Chamber of the Federation of Bosnia and Herzegovina,
Bosnia and Herzegovina

e Mauro Tschanz, FIP TAG Artificial Intelligence Working Group, Digitalisation Expert at Swiss Pharmacy
Association (PharmaSuisse), Switzerland

e  Mohd Syamir Mohamad Shukeri, B.Pharm., M. Comm. Health, R.Ph. MMPS, FIP TAG Artificial Intelligence
Working Group, Malaysian Pharmacist Society, Malaysia

e Paul Voigt, BPharm, MSc, DBiotech, ADHSML, FIP TAG Artificial Intelligence Working Group, Pharmaceutical
Society of South Africa, Inventory Operations Manager, Mediclinic Southern Africa

e  Régis Vaillancourt, B.Pharm., PharmD, FFIP, FOPQ, FCSHP, FIP TAG Artificial Intelligence Working Group, Vice
president Pharmacy affairs BCE Pharma Inc, Canada

e Sangeetha Ramdave, FIP TAG Artificial Intelligence Working Group, Sessional Academic, Monash University,
Australia

FIP thanks the FIP Technology Forum chair Lars-Ake Séderlund and all FIP Technology Forum members for their support,
input, and feedback on the toolkit.



| p5

The "Artificial intelligence toolkit for pharmacy" is a resource designed to assist pharmacists in integrating Al
technologies into their practice. Developed by the International Pharmaceutical Federation (FIP), this toolkit aims to
bridge the gap between the rapidly evolving field of Al and the practical needs of pharmacists.

Purpose and importance of Al in pharmacy: Al is revolutionising healthcare by enabling the analysis of vast amounts
of medical data, assisting in clinical decision-making, personalising patient treatments, predicting disease outbreaks,
and optimising operational workflows. Closely aligned with FIP Development Goal 20 (Digital Health), Al helps build a

digitally competent pharmacy workforce, improving clinical care, disease screening, health systems management, and
pharmaceutical research. Nonetheless, pharmacists face critical challenges, including data privacy, cybersecurity
threats, potential algorithm biases, and ethical concerns.

FIP's commitment and initiatives: FIP is committed to guiding and supporting pharmacists on the effective use of Al
technologies. In 2023, FIP established an Al working group to identify the needs of its constituencies around Al and
enhance inter-sectoral collaboration. This group aims to bridge knowledge gaps and promote the understanding and
use of Al technologies among pharmacists and pharmaceutical scientists.

Toolkit objectives: This toolkit provides a high-level guide for pharmacists, offering an overview of Al implementation
considerations, practical applications, and inspiring innovation. It aims to empower pharmacists to deliver safer, more
effective, and personalised patient care without undermining their critical thinking or professional judgment.

Al and FIP Development Goals: The toolkit supports the delivery of the FIP's Development Goals, and aligns with the

UN Sustainable Development Goals, focussing on education and continuous professional development (CPD), digital

literacy, and innovation in pharmacy practice. Specific objectives include developing educational resources for digital
competence, integrating Al training into professional education, and providing strategic guidance on digital health
workforce policies.

Challenges and considerations: Effective integration of Al in pharmacy requires pharmacists to understand Al's
capabilities and limitations, selecting appropriate tools tailored to specific challenges. Key considerations include
ensuring data quality, regulatory compliance, ethical frameworks, and infrastructure investment. Additionally,
addressing equitable access is vital to prevent exacerbating existing health disparities and inequities.

Conclusion: This toolkit aims to serve as a comprehensive resource, enabling pharmacists to navigate the complexities
of Al, capitalise on its potential, and clearly understand its limitations. By fostering innovation, collaboration, and a
proactive approach, FIP seeks to enhance Al's role in pharmacy practice, ultimately driving improvements in patient
care and global health outcomes.


https://developmentgoals.fip.org/dg20/
https://developmentgoals.fip.org/
https://sdgs.un.org/goals

2.1 Purpose of the toolkit

Artificial intelligence (Al) is a branch of computer science dedicated to creating systems capable of performing tasks
that typically require human intelligence, such as learning, reasoning, problem-solving, and pattern recognition. Al
applications are increasingly utilized to analyse large volumes of medical data, assist clinical decision-making,
personalize treatment plans, predict disease outbreaks, and optimize operational workflows in healthcare settings.

Digital health is a priority for FIP, guiding pharmacists on how best to use digital advancements to support healthcare
delivery, pharmacy practice, and pharmaceutical research. Al is an emerging area within digital health that has
immense potential to improve efficiency in clinical care, disease screening and surveillance, clinical care, optimising
health systems management and facilitating advanced pharmaceutical research and development. Furthermore, Al
has the potential to promote equity in healthcare access globally, empowering patients to actively manage their
healthcare needs. However, even with the plethora of Al digital enablers entering the pharmacy sector, Al presents its
own challenges and poses risks in data privacy concerns, safety risks, encoded biases, and cybersecurity threats.

FIP acknowledges its responsibility to collaborate, guide, and educate pharmacists globally on effectively utilizing Al to
achieve optimal health outcomes. FIP is committed to fostering an environment where pharmacists can confidently
adopt these technologies. In 2023, with these goals in mind, FIP established an Al working group as a subgroup of the
FIP Technology Advisory Group, tasked with mapping Al-related needs of FIP constituencies and providing practical
resources and guidance.

This toolkit, developed by the Al Working Group, seeks to bridge the gap between the rapidly evolving field of Al and
the practical, everyday needs of pharmacists. It serves as a high-level guide for pharmacists in navigating the
complexities of Al applications by providing an overview of considerations for Al implementation. It aims to illustrate
practical applications and inspire innovation among FIP constituencies, ensuring they are well-equipped to navigate
the evolving Al landscape and leverage the benefits of Al, while understanding its limitations.

Ultimately, this toolkit aims to empower pharmacists and pharmacy teams to confidently integrate Al into their
practice in a way that complements their expertise, enabling them to deliver safer, more effective, efficient, and
personalized patient care while preserving pharmacists’ critical thinking and professional judgment.
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2.2 Al & the FIP Development Goals

Launched in September 2020, the FIP Development Goals seek to direct the transformation of the pharmacy
profession globally to 2030 (visit https://developmentgoals.fip.org/). Aligning with the UN Sustainable Development
Goals (SDGs), a wider global initiative, the FIP Development Goals specifically focus on enhancing pharmacy practice,
education, and pharmaceutical sciences. The ‘One FIP’ Development Goals enable the identification of commonalities
and inter-sectoral collaboration within a transformative framework for the pharmacy profession.

The FIP Development Goal on Digital Health (Development Goal 20) is structured around three elements: education
and workforce, practice, and science.

Education and workforce: ‘Enablers of digital transformation within the pharmacy workforce and effective processes
to facilitate the development of a digitally literate pharmacy workforce.’

In the context of Al, this toolkit aims to support the following Development Goal mechanisms:

e Develop courses and training for a digitally literate workforce (FIP Development Goals 1 & 2).

e Embed digital health and literacy competencies within FIP advanced and specialist frameworks (FIP
Development Goals 4 & 5).

e Provide multidisciplinary learning tools to enhance digital health literacy (FIP Development Goal 8).

e Promote the use and interpretation of Al in training and education of pharmacists and pharmaceutical
scientists. Create opportunities for ongoing education and development to ensure current practice with
technology advancements (FIP Development Goal 9).

e Provide guidance on incorporating Al into digital health workforce development policies, including
employment (FIP Development Goal 13).

Practice: ‘Systems and structures in place to develop and deliver quality digital health and pharmaceutical care
services through the digital literacy and utilisation of technology and digital enablers, configuration of responsive
digital services to widen access and equity’.

In the context of Al, this toolkit aims to support the following Development Goal mechanisms:

e Provide insight into digital health enablers and Al-driven technologies that support cutting-edge service
delivery and clinical decision-making (FIP Development Goal 20).

e Discuss digital literacy and governance concerning ownership, ethics, privacy, operational implications and
information quality. Provide guidance for policies to support and enhance health data management and
accountability for patient outcomes (FIP Development Goal 20).

e Promote Al-driven digital health initiatives that enhance equitable access to pharmaceutical care (FIP
Development Goal 20).

Science: ‘Application of digital technology in healthcare delivery and development of innovative medical products.’

In the context of Al, this toolkit aims to support the following Development Goal mechanism:
e Facilitate Al integration as a data science solution, enabling pharmacists to deliver enhanced patient care
through innovative healthcare technologies (FIP Development Goal 20).


https://developmentgoals.fip.org/
https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://developmentgoals.fip.org/dg20/
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The primary problem that informed the need for this Al toolkit is the integration of Al into daily pharmacy practice in
industry, hospital and community settings, aiming to optimise pharmacists' work processes, enhance patient care,
stimulate multidisciplinary interaction, and educate pharmacists on the efficient use of Al tools.

The integration of machine learning (ML) and artificial intelligence technologies is reshaping the roles and
responsibilities of healthcare professionals, including pharmacists. Al has the potential to augment pharmacists'
capabilities across a spectrum of tasks such as medication management (in both a logistical and pharmaceutical
context), patient counselling, drug interaction checks, personalised medicine, pharmaceutical research, and much
more.

Recent advancements in generative Al have further accelerated Al adoption, prompting the need for thoughtful and
responsible deployment. While generative Al holds significant promise for pharmaceutical care; it also presents
substantial limitations and challenges that must be addressed, to ensure effective and ethical integration.

A key significant concern is the quality and integrity of data used and produced by Al systems. Since Al outputs are
only as reliable as the data they learn from, inaccuracies, biases, or inconsistencies in training datasets can lead to
incorrect conclusions or predictions. This is particularly critical in pharmaceutical care where patient safety and
efficacy of medications are concerned.

Another critical issue is “Al hallucination”, where generative Al systems produce incorrect, nonsensical, or fabricated
outputs. This poses significant challenges in critical applications such as pharmaceutical care.! For instance, Al might
produce plausible sounding, yet false medical advice or treatment recommendations, stemming from limitations in
training data, pattern recognition errors, or inference mistakes. Addressing these hallucinations involves improving
training data quality, implementing verification steps, and ensuring human oversight to maintain accuracy and
reliability. As pharmaceutical care providers increasingly integrate Al tools, understanding and mitigating Al
hallucinations is crucial to ensure safe and effective patient care.

In addition to technical safeguards and human oversight, regulatory considerations play a central role in the successful
integration of Al. Pharmaceutical care is highly regulated, and Al applications must navigate complex regulatory
requirements concerning drug development, clinical trials, and patient privacy. Compliance with these regulations on
both the local and international level is essential to ensure patient safety and trust in the new technologies being
implemented.

Furthermore, the implementation of Al in pharmaceutical care requires substantial investment in terms of
infrastructure, training, and management. Health care providers and organisations must be prepared to invest in
robust IT systems and staff training to handle these advanced technologies effectively.

Ethical considerations also play a critical role. The use of Al must align with ethical standards concerning patient
confidentiality and safety, consent, and the avoidance of bias in treatment recommendations. Ensuring that Al
systems are transparent and their workings understandable to regulators and practitioners is crucial for their
acceptance and trustworthiness.

Finally, while Al can enhance the personalisation and efficiency of care, there's a risk of deepening existing health
disparities if not carefully managed. Ensuring equitable access to the benefits of Al technology in pharmaceutical care

is essential to avoid exacerbating health inequalities.

This toolkit will dive further into these topics and provide a list of considerations to keep in mind when exploring ways
to leverage Al tools for implementation.

3.1 The fundamentals of Al

Al models are divided into two broad classifications: predictive and generative. Predictive models learn patterns in
data and apply those patterns to new data it has never seen before, i.e., to predict potential outcomes. Predictive Al
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has already found several use cases within pharmacy and in healthcare in general, including tablet recognition, drug
design, cancer diagnosis, and population health analysis. Some types of predictive models include:

1. Classification and labelling
2. Risk prediction and forecasting
3. Recommendation

Generative models learn patterns in data to generate new data. The output for generative Al can range from text to
spreadsheets to images to video. ChatGPT is a popular example of generative Al. While generative Al has significant
potential and is already being leveraged across multiple industries, it also poses significant limitations and risks that
must be addressed to ensure it is used in an ethical and responsible manner.

Both predictive and generative models are driven by machine learning. Machine learning models that use neural
networks are considered ‘deep learning’. By its very nature, deep learning models function as “black boxes”, which
means that the way the model comes to its conclusions is unexplainable by the Al itself or its human user. This can
pose conceptual hurdles for regulatory bodies.

The method of learning applied by a particular model or tool will influence its functionality and utility. Not all learning
styles are appropriate for a given use. These learning methods are:

1. Supervised
2. Unsupervised
3. Reinforcement

Supervised learning involves training the model on pre-labelled data. Labelled data implies that the machine is
provided with a description of the data it is presented with, for example an image of a cat labelled as “CAT”. This
forms a library of reference material the machine uses when predicting outcomes or generating new data based on
unlabelled new data inputs. Supervised learning has been used in healthcare to develop models to predict the
presence of a disease, create risk scores or forecast the prognosis of a disease.? A predictive Al engine utilising
supervised learning has also been applied to drug discovery, resulting in a novel, broad spectrum antibiotic known as
Halicin.?

A common challenge with supervised learning in healthcare is having enough labelled data. It takes time to create
labelled datasets. It tends to be easier to label things like medical images (i.e., x-rays or MRIs). However, it is more
difficult when labelling a medical event or outcome, such as an exacerbation of a chronic condition, which requires
domain expertise and making judgement calls. Not everyone may interpret the data in the same way, which in turn
impacts the ultimate output of the model. Privacy and security are also an issue in creating and sharing labelled
datasets.

Unsupervised learning involves training a model on unlabelled data. Deep learning is then used for the machine to
identify patterns, relationships or similarities in the data. Often these patterns are unidentifiable by humans reviewing
the same data. An example would be conducting a cluster analysis that groups patients into different phenotype
groups based on similarities in many variables or data points available for each patient. However, one must be careful
if using this learning method to make a predictive model; unsupervised learning models can also be prone to
nonsensical or biased outputs as they have not been trained on what an acceptable output would be.

Supervised and unsupervised learning are very powerful in identifying patterns, including text, chemical structures,
DNA sequences, images, and video and using them in making predictions. However, it is less powerful in dynamic
environments, where the sequence of a series of events or decisions is important to the outcome. For such purposes,
reinforcement learning may be more applicable.
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Reinforcement learning “rewards” the model for making correct decisions. The model learns to predict the next action
or set of actions that increase the likelihood of a delayed reward.* The reward process needs to be programmed into
the model, so that after every decision the model makes, it receives either a positive reward or a negative reward.
This lets the model know if decisions are taken in the right direction. Two significant experiments were conducted
using an Al model known as AlphaZero to play the games of Go and chess.> Using reinforcement learning, the model
learned what series of game moves were most likely to result in the delayed reward of winning the game. The model
developed novel strategies that had never occurred to humans in the history of the game of chess. At the time of
writing, no human has beaten AlphaZero. The concept of reinforcement learning can be applied to the medical field
where multiple decisions are made for a future distant reward, such as survival to hospital discharge or making
medication adjustments to achieve a target A1C.

Al is a broad technology category; however, all Al tools or applications can be broken down into three major
components: the input, the algorithm/model, and the output as outlined in Figure 1.

Algorithm/

ol Output

Understanding each of these components is important to understanding how the technology can be leveraged in each
situation. Table 1 outlines the different types of Al tools available based on the input data the model uses.

Model input Al tool description

Vision These are models that use images as their input data. This includes diagnostic tools for examining medical
images such as chest X-rays or CT scans. An example includes a pill identification model able to identify
unlabelled pills and tablets with 85% accuracy.®

Text Models that use text as the input means that they can interact with natural speech or text. This can be in
the form of a chatbot (similar to tools like ChatGPT), or it could be a document classification model.

Voice These types of models take raw voice audio as the input. Examples include dictation programmes, smart
speakers or devices, or smart assistants on mobile devices. There are also Al-enabled clinical applications
that use voice markers to diagnose or to measure a patient’s stress levels.

Tabular Tabular data includes any type of data that could be organised or stored in a spreadsheet. Models that use
this type of data include risk predictor algorithms.

Multi-modal A multi-modal model indicates that the model can accept more than one type of input. For example, a
chatbot may respond to text, but also to an uploaded image.
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3.2 Assessing the performance of Al

Assessing the performance of machine learning models is crucial for validating the technical robustness and accuracy
of these models but also for ensuring transparency, accountability, and building trust among users.

Performance metrics serve as the foundational tools that guide developers and stakeholders in understanding how
well a model performs in various scenarios, identifying strengths and weaknesses, and making informed decisions
about model improvements and applications.

The following section summarises common methodologies and tools used to evaluate Al models and ensure
interpretability for transparency and understanding.

Measuring the performance of Al models is not merely a technical necessity but a foundational practice for
establishing transparency, trust, and accountability. Transparency involves providing clear and accessible information
about how models function and their performance, ensuring that users can understand and trust the Al's insights to
support decision making. Accountability ensures that developers and organisations are responsible for their models'
performance, the ethical implications, and the potential impact on patients. Model cards serve as an important tool to
help achieve this.

Model cards serve as comprehensive and structured guides with essential details about a machine learning model.”
They provide a standardised framework for information about the model’s characteristics, performance, limitations,
and intended use cases, and allow a comparative analysis between different models. Google Research developed the
Model Card Toolkit (MCT) to increase transparency in machine learning. The MCT helps developers create model
cards, which provide essential information about a model's origins, intended use, and ethical considerations. By using
the MCT, developers can easily document their models and ensure they are used responsibly.® Looking at a model
card should help one determine if a model is appropriate for a specific task or use. A typical model card can include
various components, as described in Table 2.

Component Detail

Description Brief description and unique identification of the model, including time of production and
model version, if applicable.

Purpose, users, and context Clear articulation of the model’s intended purpose, answering questions such as: for what
purpose the model was developed; for which purpose the model is not suitable to be used;
the potential users that can benefit; the context in which it should or should not be applied;
and potential limitations of generalisation for different purposes, users and contexts.

How to use Understandable guidelines written in simple language to ensure users can effectively deploy
the model. If possible, flowcharts and schemes should be provided to ease the user's
comprehension.

Performance metrics Metrics vary according to model type and purpose (e.g., generation, prediction, classification,
etc.). It is important that performance metrics are accompanied by an interpretation of what
they mean within the context of use. Whenever possible, examples should be provided to
facilitate the user’s understanding, particularly related to the uncertainty around the model’s
results. When applicable, the model’s performance across different population subgroups
should be listed to provide insight into potential biases that may exist.
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Training data

Ethics

Uncertainty

Author, code, license, and

ownership

Contacts and resources

Transparency of the training data is essential. This includes the source, quality, any
preprocessing steps applied and any specific groups or subgroups that may be over or
underrepresented. Understanding the dataset helps users gauge the model’s applicability and

potential biases.

Ethical considerations are paramount in Al. This includes addressing bias, fairness, and
privacy. Ensuring that models do not perpetuate biases, and that user data is handled
responsibly is critical for maintaining ethical standards.

Every model has limitations and uncertainties. Documenting these helps manage user
expectations and informs them of potential risks and areas where the model might

underperform.

Clearly stating the authorship, availability of the code, licensing terms, and ownership rights

enhances transparency and encourages community contributions and improvements.

Providing contact information and additional resources supports users in understanding and

effectively using the model. It also opens channels for feedback and improvement.

To better understand the specific metrics used to evaluate how well a model performs, Table 3 provides an overview

of the metrics which might be seen on a model card or provided by the model developers.

Model type

PREDICTIVE Al

Classification

Regression

Metrics for measuring
performance

Accuracy
Precision

Recall

F1 Score
Sensitivity
Specificity
ROC-AUC
Confusion Matrix

For definitions of these
metrics, see next section.

Mean Squared Error (MSE)
RZ

Mean Absolute Error (MAE)
Root Mean Squared Error
(RMSE)

Description

Evaluates models that
label or categorise inputs
into classes. Metrics assess
the correctness of
predictions.

Evaluates models
predicting continuous
values. Metrics measure
the deviation between
predicted and actual
values.

Example

Example: A model classifies patient records
into categories like prescription refill
requests or appointment scheduling
enquiries.

Applying performance metrics: High
accuracy and precision indicate correct
categorisation, minimising errors. High
recall ensures important categories are not
missed. A high Area Under the Receiver
Operating Characteristic Curve (ROC-AUC)
combined with Confusion Matrix (see Table
4) suggests effective distinction between
categories.

Example: A dose prediction model for
personalised medicine.

Applying performance metrics: Low MSE
and RMSE indicate close alignment
between predicted and actual dosages,
reducing underdosing or overdosing risks. A
high R? suggests the model effectively
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captures the relationship between patient
characteristics and required dosage.

Time series Mean Absolute Percentage Evaluates accuracy and Example: A forecasting model predicts
Error (MAPE) error in future value future medication demand.
Root Mean Squared Error predictions based on past
(RMSE) data. Applying performance metrics: Low MAPE

and RMSE indicate accurate forecasts,
helping maintain optimal inventory levels.

GENERATIVE Al

Generation Large Language Models Measures similarity Example: A model generates medication
(LLM): between generated and counselling scripts tailored to patients.
reference content.

Perplexity (PPL) ° Applying performance metrics: A high BLEU
score indicates that the scripts closely

Bilingual Evaluation match high-quality references prepared by

Understudy (BLEU)10. 11 clinical pharmacists, ensuring patients
receive accurate and comprehensible

General Language advice.

Understanding

Evaluation (GLUE)1?

Recall-Oriented
Understudy for Gisting
Evaluation (ROUGE)*3
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]
3.3 Performance metrics for classification models

It is beyond the scope of this toolkit to provide a comprehensive view of all performance metrics, so this section goes
into greater detail around some of the most common model performance metrics one might come across. Precision,
recall, F1 score, specificity, and sensitivity are frequently used metrics to assess a model's effectiveness for prediction
through classification.* The ROC-AUC curve and Confusion Matrix are useful tools to understand a model's capacity to
distinguish between different classes on prediction. The following content explains the theoretical fundamentals of
these metrics.

® Precision, also known as positive predictive value, measures the accuracy of positive predictions made by the
model. It is particularly useful in scenarios where the cost of false positives is high. Precision answers the
question: "Of all the instances predicted as positive, how many are actually positive?"

The formula for precision is given by:

TP

p .. - _
recision TP + FP

TP (True Positives) are the instances correctly predicted as positive.
FP (False Positives) are the instances incorrectly predicted as positive.

e Recall, also known as sensitivity or true positive rate, measures the model's ability to identify all relevant
instances. It is crucial in situations where missing a positive instance is costly. Recall answers the question:
"Of all the actual positive instances, how many did the model correctly identify?"

The formula for recall is:

Sensitivity (Recall) = TP+ FN

TP (True Positives) are the instances correctly predicted as positive.
FN (False Negatives) are the instances incorrectly predicted as negative.

® F1Score is the mean of precision and recall, providing a balance between the two metrics. It is particularly
useful when there is an uneven class distribution (i.e., one of the classes is rare) or when both false positives
and false negatives need to be minimised.

The formula for the F1 score is:

Precision x Recall
F1 Score = 2 x

Precision + Recall

e Specificity, also known as true negative rate, measures the model's ability to identify negative instances
correctly. It is important in situations where the cost of false negatives is high. Specificity answers the
question: "Of all the actual negative instances, how many did the model correctly identify?"

The formula for specificity is:

TN

SpeCifiCty = m
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® ROC AUC Curve is a graphical representation of a classifier's performance. The Receiver Operating
Characteristic (ROC) curve plots the true positive rate (sensitivity) against the false positive rate (1-specificity)
at various threshold settings. The Area Under the Curve (AUC) provides an aggregate measure of the model's
performance across all thresholds. A model with an AUC of 1 is perfect, while an AUC of 0.5 suggests no
discriminative ability.

e Confusion Matrix is a table used to describe the performance of a classification model on a set of test data for
which the true values are known. It allows visualisation of the performance of an algorithm. The matrix is N x

N, where N is the number of classes. It provides insights into the types of errors being made by the classifier.

The confusion matrix in Table 4 has the following structure:

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Assessing the performance of Al models through structured and transparent methods is crucial for fostering trust and
accountability. By prioritising transparency, ethical considerations, and involving end users in the assessment process,
Al developers can create models that are not only technically sound but also trustworthy and aligned with user needs.
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4.1 Creating Al that is trustworthy

Recent advancements in machine learning (ML) and artificial intelligence (Al) have transformed various industries,
including healthcare. While these technologies offer tremendous potential benefits, they also pose ethical dilemmas
that must be addressed to ensure responsible and equitable use. The “Ethics guidelines for trustworthy Al" by the
High-Level Expert Group on Artificial Intelligence (HLEG on Al), commissioned by the EU in 2019, provides
comprehensive guidelines for ensuring ethical and trustworthy development and deployment of Al.*> According to the

Guidelines, trustworthy Al should be:

1. Lawful —respecting all applicable laws and regulations;

2. Ethical — respecting ethical principles and values; and

3. Robust —from a technical perspective whilst also taking into account its social environment.

The guidelines outline seven key requirements that Al systems should meet to be considered trustworthy (see Table

5).

Key Requirement

1. Human agency and oversight

2. Technical robustness and safety

3. Privacy and data governance

4. Transparency

5. Diversity, non-discrimination, and fairness

6. Societal and environmental well-being

7. Accountability

Details

Al systems should support human autonomy and decision-making,
with humans ultimately accountable for Al outcomes.

Al systems must be secure, reliable, and resilient throughout their
lifecycle to avoid unintended harm

Al systems should respect privacy, ensuring protection of personal
data and compliance with data protection regulations.

The processes and decisions made by Al systems should be
explainable, understandable, and accessible to users.

Al systems should be inclusive and fair, avoiding biases and
discrimination based on various attributes.

Al development and deployment should benefit society and the
environment, promoting sustainability and societal well-being.

Stakeholders involved in Al systems (developers, deployers, etc.)
should be accountable for their decisions and actions related to Al.
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4.2 The ethical considerations of applying Al in healthcare

The ethical implications of using ML and Al in healthcare are complex and multifaceted. While these technologies
offer transformative potential—such as improving patient safety—they also introduce ethical challenges such as bias
in patient care when influencing clinical decision-making.¢

One example of a major ethical concern is “inconclusive evidence”, which highlights that algorithms are probabilistic
and never infallible.'” For example, a smartwatch might incorrectly diagnose an irregular heartbeat due to
inaccuracies in heart rate measurements. Such errors can arise when algorithms are calibrated to general population
norms—such as specific skin tones—rather than individual patient characteristics. This demonstrates how biases in Al
development can lead to disparities in patient care.

Additionally, responsible Al deployment in healthcare must address patient safety, privacy, transparency, fairness,
informed consent, and workforce implications, particularly within pharmacy practice.!® Ensuring ethical Al integration
requires careful consideration of the four foundational principles’® of medical ethics:

e Autonomy — a patient’s right to self-determination;

e Beneficence — the responsibility to ‘do good’;

e Non-maleficence — the responsibility to ‘do no harm’; and
e Justice —to treat all equally and equitably.

By proactively addressing these ethical challenges, we can maximise the benefits of Al in healthcare while upholding
ethical standards and ensuring patient welfare.

The challenge of defining ethical Al: Despite widespread acknowledgment that Al should adhere to ethical principles,
there is ongoing debate regarding the practical definition of "ethical Al." This includes uncertainties around specific
ethical requirements, technical standards, and best practices for implementation. The World Health Organization
(WHO) has outlined key ethical principles for Al in healthcare, including: protecting autonomy; promoting human well-
being; ensuring transparency, explainability and intelligibility; fostering responsibility and accountability; ensuring
inclusiveness and equity; and, promoting responsive development.?° Similarly, a review of the global landscape of Al
ethics guidelines identified five converging ethical principles: transparency, justice and fairness, non-maleficence,
responsibility, and privacy.?! Taking these ethical principles into account, the following section elaborates on key
ethical issues that must be considered for the responsible implementation of Al in healthcare.

4.2.1.1 Privacy and security
o The use of ML and Al involves handling large volumes of sensitive patient data, raising concerns about privacy
breaches and data security.

e Methods for anonymisation and encryption of data must be robust to protect patient confidentiality.

o Researchers and end-users need to consider the confidentiality and privacy risks associated with the data
used.

® Privacy and security measures should address both training data fed into the machine and the outputs
resulting from the machine learning findings.

4.2.1.2 Transparency
e Machine learning models can be complex and difficult to interpret. Researchers and Al developers must

consider the transparency and explainability of their models.??

e ML and Al algorithms often operate as "black boxes," making it challenging to understand their decision-
making processes.



p18 |

e Ensuring that machine learning is transparent allows for better reproducibility and understanding of the
underlying processes.

e Ensuring transparency in algorithmic outputs and establishing accountability for algorithmic errors or biases
are critical ethical considerations.??

4.2.1.3 Accountability

e Throughout the machine learning process, accountability is paramount. Models should be used only for their
intended purposes, and stakeholders must be aware of their responsibilities.

e Researchers, Al developers, and end-users such as clinicians, should maintain accountability to prevent
unintended consequences or misuse of machine learning outcomes.

4.2.1.4 Bias and fairness

e ML models trained on biased datasets can perpetuate or amplify existing biases in healthcare, leading to
inequitable treatment.

® Bias can also be introduced through the model architecture itself and decisions made during the training
process.?

e Ethical ML practices require strategies to identify and mitigate bias in data and algorithms to ensure fairness
and equity in healthcare delivery.

4.2.1.5 Informed consent

e Patients may not fully understand the implications of Al-driven diagnostics or treatment recommendations.?

e Ensuring informed consent for Al-enabled interventions involves educating patients about Al's role and
limitations in healthcare decision-making.

4.2.1.6 Impact on healthcare professionals

e ML and Al technologies may alter the roles and responsibilities of healthcare professionals, potentially
leading to workforce displacement or deskilling.

e Ethical guidelines should address the ethical implications of technology-driven changes in professional
practices and job roles.

To effectively address the ethical challenges associated with Al deployment within healthcare, stakeholders from both
the healthcare and technology sectors must collaborate to develop comprehensive guidelines and regulations. Table 6
outlines key mitigation strategies and actions for the ethical integration of Al, focusing on enhancing ethical decision-
making and actively engaging pharmacists and other stakeholders.

Strategy Actions
Establish clear ethical o Develop and disseminate ethical guidelines governing the development and deployment
guidelines of Al technologies in healthcare, addressing key issues such as bias, transparency, patient

privacy, and environmental considerations.
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Integrate ethics training
into educational
programmes

Implement robust
auditing and validation
mechanisms

Engage patients and
communities

Deploy an enhanced
ethical decision-making
framework

Empower pharmacists
as end users

® Incorporate ethics training into educational curricula for healthcare professionals
specialising in digital health, including Al.2*

e  Provide ongoing professional development opportunities focused on the ethical use of Al
in both clinical practice and science.

o Develop mechanisms for regular auditing and validation of Al algorithms to detect and
address biases and ensure fairness.

e  Engage third-party auditors to provide independent assessments of Al systems.

e  Actively involve patients and communities in discussions about the role and impact of Al
on healthcare decision-making processes.

e  Ensure transparency with patients about how their data is used and obtain explicit

consent.

Comprehensive
stakeholder engagement

Integration of ethical
norms

Holistic ethical guidance
across the Al and ML
lifecycle

Assessing model
transparency

Identifying and
mitigating bias

Ensuring fairness and
equity

Ongoing education and
training

Involve a diverse range of stakeholders, including Al and ML
developers, healthcare decision-makers, research ethics
committees, regulators, and others committed to promoting
equitable and responsible use of clinical ML technologies.

Align the ethical design of Al and ML tools with established
norms within the healthcare environment, encompassing
principles of biomedical ethics, clinical research ethics, and
social justice.

Emphasise ethical considerations at each stage of Al and ML
integration in healthcare, reflecting on the implications of
these principles for fostering fairness in ML applications.

Train pharmacists to interpret Al recommendations and
understand the underlying decision-making processes.2>

Ensure Al systems have comprehensive documentation
detailing their design, training data, and decision rationale
(see section on Assessing Model Performance).

Regularly monitor Al outputs for signs of bias and report any
inconsistencies to relevant authorities or developers.

Utilise feedback mechanisms to report biases and collaborate
with developers to improve model fairness.

Advocate for equitable Al use across all patient
demographics, ensuring Al does not disproportionately
impact vulnerable populations.23

Verify Al recommendations, particularly in complex cases, to
ensure they enhance patient care quality.

Engage in continuous professional development to stay
updated on Al advancements and ethical considerations.

Reflect on the ethical implications of Al in everyday practice
and integrate these considerations into patient care.

Create a culture of accountability among end-users, who have
a responsibility to prevent unintentional harms caused by the
models they use.
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Patient and community e Communicate openly with patients about the role of Al in
engagement their care, explaining the rationale behind Al-driven
recommendations.

®  Foster community dialogue addressing public concerns and
enhancing trust in Al technologies.

Proactive risk o Develop strategies to anticipate and address potential ethical
management dilemmas, such as Al errors, hallucinations or unintended
consequences.

® Collaborate with other healthcare professionals to share best
practices and improve Al deployment in pharmacy.

By implementing the mitigation strategies in Table 6, pharmacists can play a crucial role in ensuring the ethical and
responsible use of Al in healthcare. Empowered with the right tools and knowledge, pharmacists can help mitigate risks
and maximise the benefits of Al for patient care, contributing to a more transparent, fair, and patient-centred approach,
fostering trust and accountability in Al applications.
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When integrating Al technology into pharmacy practice, it's essential for pharmacists to navigate several critical areas
effectively to ensure compliance on important areas like patient data confidentiality, quality and algorithm
reproducibility, and ICT security. Al systems used in pharmacy practice must adhere to specific healthcare and IT-
related regulations which vary by country or region.

5.1 General Al regulation

Al regulations vary significantly across different global regions, reflecting each area's unique approach to balancing
innovation with oversight. Across the regions, there is a clear trend towards establishing frameworks that ensure Al is
used ethically and responsibly without stifling innovation. While Europe emphasises robust regulatory frameworks,
the Americas are characterised by a more decentralised and sector-specific approach. Asia-Pacific shows a mixed
strategy. Table 7 further describes the regulatory landscape across each region.

Region Regulation landscape

Europe The European Union (EU) has been proactive with its comprehensive "Al Act," which classifies Al applications
based on risk levels and sets stringent requirements for high-risk uses, including biometric surveillance and
subliminal manipulation. This legislation emphasises transparency, accountability, and fairness in Al use,
aiming to align with European values of human oversight and privacy. The UK’s strategy focuses on principles
of safety and transparency while emphasising avoidance of overly restrictive regulations to foster Al
development and promote innovation.26

Americas In the USA, there is not yet unified Al legislation; instead, the country employs various guidelines and
frameworks to manage Al applications, often focusing on sector-specific measures. Canada has introduced
the Al and Data Act (AIDA), promoting safety and responsible Al practices, and Brazil is actively developing
comprehensive Al legislation to regulate high-risk Al systems and ensure transparency and accountability in Al
deployments.

Asia-Pacific China has taken significant steps in Al regulation with specific laws for algorithmic recommendations and
deep synthesis technologies, aiming to ensure content integrity and fairness while maintaining control over Al
innovations. Japan relies more on non-binding guidelines and sector-specific rules rather than comprehensive
national legislation, promoting a flexible approach to support Al innovation. India and other Asian countries
are currently formulating its approach, signaling a shift towards more definitive regulations soon.

Africa Various countries are at different stages of developing national strategies and policies to manage and harness
the benefits of Al technology. Legislation and guidelines are still heavily reliant on the various data protection
laws. Nations like South Africa, Mauritius, Egypt, and Kenya are pioneering efforts to draft and implement Al
guidelines that address both the opportunities and ethical challenges posed by Al. These initiatives often
consider adapting global standards, such as the EU's Al Act, to local contexts, promoting innovation while
safeguarding ethical values and societal norms. The African Union is also playing a role, suggesting a move
towards a more unified continental strategy. However, challenges such as limited technological infrastructure
and the need for local Al expertise remain significant hurdles. These regional differences highlight the
importance of international collaboration and dialogue to harmonise Al governance, ensuring that global
standards can accommodate local needs while promoting safe and beneficial Al development globally.

5.2 Data protection and privacy in general in healthcare

Protecting the confidentiality, integrity, and availability of patient data is paramount. Al systems process vast amounts
of sensitive data, and ensuring this data is protected against unauthorised access, breaches, and leaks is a
fundamental ethical and legal requirement. Effective data protection measures help maintain patient trust, a
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cornerstone of healthcare provision. Failure to protect data can lead to financial losses, erosion of patient trust, and
severe regulatory penalties, including criminal prosecution in certain jurisdictions.

In the USA, HIPAA (Health Insurance Portability and Accountability Act) is a primary regulatory framework that
pharmacies must comply with to protect patient information.?” Pharmacies must ensure that all systems handling
patient data, including Al technologies, meet HIPAA standards to avoid penalties such as those enforced on entities
like CVS Pharmacy and Rite Aid for improper disposal of personal health information (PHI). Pharmacies in the USA
must adopt robust encryption for stored data and secure transmission protocols to meet HIPAA requirements.

In Europe, similar protections are provided under the General Data Protection Regulation (GDPR).22 Under GDPR,
pharmacists must ensure the confidentiality of patient data with strict access controls, and monitor for unauthorised
access. Pharmacy owners should conduct regular reviews of data retention policies and ensure that staff understand
the importance of patient confidentiality.

The African union has adopted the Convention on Cyber Security and Personal Data Protection to facilitate alignment
of legislation across member states. This convention is not binding but serves as a guideline. Across the continent, 36
out of 55 countries have enacted data protection laws. South Africa has enacted the Protection of Personal
Information Act (POPIA) which applies to any processing of personal information. It imposes criminal consequences
for failing to adequately protect personal data. The act stipulates rights and responsibilities of data subjects and users,
security measures required and how information can be sent out of the country, which has implications for any
offshore data processing. Similarly, Egypt, Kenya, Nigeria, and Zimbabwe have implemented their respective Data
Protection Acts (DPA).

Pharmacists must maintain a human-centred approach, ensuring that Al supports but does not replace the personal
interaction and care that is critical in healthcare. Equity in healthcare access is another vital consideration;
pharmacists must be vigilant that Al tools do not inadvertently exacerbate disparities by favouring certain populations
over others. Continuous education on Al developments and ethical guidelines is essential, empowering pharmacists to
make informed decisions and advocate for the responsible use of technology. By balancing innovation with ethical
vigilance, pharmacists can harness Al to enhance patient care while upholding the profession's core values of trust,
confidentiality, and equity.

Regulation around Al applications varies by country. Autonomous Al applications are those that operate without a
human to verify or check the output. Some countries require robust clinical validation for autonomous Al, meaning
that the Al application must be tested and proven to be safe and effective for its intended use. Regulation for these
types of applications are often included within medical device regulations. Applications that are not autonomous may
not require such strict regulation.

In Europe, the Medical Device Regulation (MDR) is crucial for pharmacists integrating Al technology into healthcare, as
it provides a comprehensive framework ensuring the safety, efficacy, and quality of medical devices, including Al-
driven tools.?® Under MDR, Al technologies classified as medical devices must meet stringent requirements for risk
management, clinical evaluation, and post-market surveillance. For pharmacists, adherence to MDR is essential to
ensure that Al tools used in patient care are reliable, secure, and comply with European standards. This regulation
also emphasises transparency and traceability, ensuring that Al systems are not only effective but also explainable and
accountable, ultimately protecting patient safety and enhancing trust in Al-driven healthcare solutions.

In the USA, Al technology in healthcare is primarily regulated by the Food and Drug Administration (FDA) under its
Digital Health and Software as a Medical Device (SaMD) frameworks.?% 3° The FDA evaluates Al-driven tools based on
their intended use, potential risk to patients, and whether they meet the criteria for a medical device. For Al
technologies classified as medical devices, the FDA requires a rigorous review process, including premarket approval
or clearance, to ensure safety, effectiveness, and quality. The agency also emphasises post-market surveillance and
the need for continuous learning and adaptation of Al systems, ensuring they maintain performance standards over
time. This regulatory approach aims to balance innovation with patient safety, providing a robust framework for the
integration of Al into healthcare. However, Al applications that are used only as clinical decision support are often not
required to be tested and proven safe and effective before use, because there is a human safety net. These Al
applications must still be responsibly deployed in a way that promotes safety and minimises risk, understanding that
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the burden of responsibility falls on the clinical end-user to ensure efficacy and safety. It is important to be able to
distinguish between Al applications that require validation and those that do not.

In Asia, the regulation of Al technology in healthcare varies across different countries, but several leading nations such
as Japan, China, and South Korea are developing comprehensive frameworks to govern the use of Al in medical
contexts. In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) oversees Al technologies that qualify as
medical devices, focusing on safety, efficacy, and post-market monitoring, similar to the FDA's approach. China has
implemented strict regulations through the National Medical Products Administration (NMPA), requiring rigorous
testing and approval for Al medical devices, with a strong emphasis on data security and patient privacy. South Korea,
under the Ministry of Food and Drug Safety (MFDS), also regulates Al in healthcare, mandating approval processes and
ensuring continuous monitoring of Al tools in the market. Overall, while regulatory frameworks in Asia are still
evolving, there is a clear trend toward aligning with international standards, ensuring that Al in healthcare is safe,
effective, and secure across the region.

Ensuring that Al systems in pharmacy practice adhere to interoperability standards like Health Level 7 (HL7) or Fast
Health Interoperability Resource (FHIR) is crucial for seamless data exchange across different healthcare systems.3!
This compatibility helps in maintaining a unified and efficient healthcare information environment.

Pharmacies must implement strong cybersecurity measures to protect against threats. This includes employing
encryption, secure access controls, and regular security audits to safeguard patient information. Strategies like two-
factor authentication and robust password policies are recommended to enhance security. 1ISO27001 and 1S027799 to
protect health data are essential certifications to consider.

Al tools should be accessible to all users, including those with disabilities, and designed to prevent healthcare
disparities. This requires careful design and implementation practices to ensure that Al systems are usable by a
diverse patient population and do not inadvertently exclude any groups.

Al can be designed to emphasise inclusivity by ensuring that algorithms are trained on diverse and representative
datasets, which helps to mitigate biases and improves the system's performance across different demographic groups.
For example, in healthcare, Al can be developed to consider varying genetic backgrounds, socioeconomic factors, and
gender differences, ensuring that diagnostic tools and treatment recommendations are effective for all populations.
Additionally, Al interfaces can be designed to be accessible to individuals with disabilities, incorporating features like
voice recognition for those with limited mobility or visual impairments. Multilingual support and culturally sensitive
content are other ways Al can be tailored to serve a broader range of users, ensuring that technology benefits
everyone, regardless of their background or abilities.

By addressing these areas, pharmacists can effectively use Al to complement their expertise, enabling safer, more
effective, and personalised patient care. Each region may have specific regulatory requirements, and staying informed
through continuous education and monitoring of regulatory updates is essential for maintaining compliance and
ensuring the effective use of Al in pharmacy practice.

As pharmaceutical care providers increasingly implement Al technology, future trends in Al regulation to keep in mind
include the potential for stricter data privacy laws, particularly concerning patient data, and the establishment of
clearer guidelines on Al accountability and transparency. Regulators may require Al systems in healthcare to undergo
rigorous testing and validation processes to ensure safety and efficacy, similar to the approval process for new drugs.
Additionally, there could be a push for more robust frameworks that ensure Al-driven decisions remain explainable
and interpretable to healthcare providers and patients, to maintain trust and uphold ethical standards in patient care.
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While an Al model's accuracy and performance are crucial, its ultimate clinical efficacy is determined by its practical
application within the deployment environment. Even the most advanced Al models can fall short of their potential if
they are not effectively integrated into practice. The deployment of Al models presents various barriers and
challenges that must be addressed to ensure their successful implementation and impact.

6.1 Algorithmic bias

Bias in Al occurs when the algorithms produce systematic and unfair discrimination against certain individuals or
groups. This can stem from biased training data, flawed model design, data and concept drift, or improper
deployment. In the context of healthcare and pharmaceuticals, the consequences of such biases can be particularly
severe, affecting patient outcomes and treatment efficacy.3% 33 Fortunately, there are strategies that can be deployed
to help address bias, as described in Table 8. While these strategies may not eliminate bias, they can help mitigate it.

Strategy Detail

Diverse data collection Ensuring that training data is representative of diverse populations can help mitigate bias.
This involves collecting data from various demographic, geographic, and socio-economic
backgrounds.

Algorithmic fairness Implementing fairness-aware algorithms that actively check for and correct bias during

model training can prevent biased outcomes. Given the various models of fairness, each
addresses different aspects of bias, such as demographic parity

For further learning, the Alan Turing Institute offers a course 34 on assessing and mitigating
bias and discrimination in Al, which provides practical techniques and comprehensive
insights into algorithmic fairness.

Continuous monitoring Regular audits of Al systems to detect and address bias are essential. This involves setting up
feedback loops where the system's outputs are continually assessed for fairness. There are
multiple definitions for fairness. Castelnovo et al.35 define fairness through the following
concepts:

e Individual fairness: Similar individuals should receive similar outcomes. This
includes concepts like Fairness Through Awareness (FTA) and Fairness Through
Unawareness (FTU), which deal with treating individuals similarly based on their
features without considering sensitive attributes like gender.

®  Group fairness: This focuses on treating groups equally and includes:
o Independence (demographic parity): Decisions should be independent of
sensitive attributes.
o Separation (equality of odds): Ensuring equal error rates across groups.
o Sufficiency (calibration): Ensuring predictions are equally accurate across
groups.

Transparency and explainability = Making Al systems transparent and their decision-making processes explainable can help
identify and rectify bias. Stakeholders must understand how and why Al systems make
certain decisions. Although deep learning algorithms are intrinsically unexplainable, some
tools can be used to help predict how the model makes its decisions.

Add your own guardrails The case of generative Al is a different issue. Data that did not exist is generated in the
model’s outputs. Since these models are not trained to be factual, a major concern with
these models is hallucinations, where the model provides a response that is false or
inaccurate. Furthermore, these models are non-deterministic: when given a single prompt,
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6.2 Model drift

there are many correct (and incorrect) answers. Prompt engineering plays a crucial role in
this case.

Model drift, when the performance of an Al model degrades over time due to changes in underlying data patterns, is a

critical issue.3® If not appropriately managed, it can lead to the model slowly becoming more inaccurate over time.
Table 9 lists strategies for minimising the impact of model drift.

Strategy

Regular retraining

Performance monitoring

Version control

Anomaly detection:

6.3 Overfitting

Detail
Periodically retraining models with new data ensures they remain accurate and relevant.

Setting up continuous monitoring systems to track model performance in real-time allows for
early detection of drift. Metrics such as accuracy, precision, recall, and F1-score can be
monitored.

Maintaining version control for models helps track changes and reverts to previous versions if
necessary. This also aids in understanding the evolution of the model's performance.

Implementing anomaly detection systems can alert stakeholders to unexpected changes in
model behavior, prompting timely interventions.

Overfitting occurs when a model learns the noise in the training data instead of the signal, leading to poor

generalisation on unseen data.3” This results in models performing very well during the training phase but performing
poorly when they are tested on any data outside the training dataset. To prevent overfitting, the strategies in Table 10

can be implemented.

Strategy

Cross-validation

Regularisation techniques

Pruning and early stopping

Ensemble methods:

Detail

There are techniques and best practices that can be used called cross-validation, which is a
technique to assess a model's accuracy by training and testing it on different subsets of data
to ensure it performs well on various data sets. An example of this is k-fold cross-validation.

These are techniques that penalise models for being too complex, promoting simplicity and
generalisation. Examples of regularisation methods include L1 (Lasso) and L2 (Ridge).

Pruning decision trees (a type of machine learning model) and stopping the training process
early when performance on validation data starts to degrade are effective methods to combat
overfitting.

Ensemble methods involve using multiple techniques at once to improve generalisation and
reduce the likelihood of overfitting.
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In addition to technical challenges, such as minimising bias, managing drift, and reducing overfitting, there are
significant administrative and human-related barriers to integrating Al into practice. These include navigating complex
clinical workflows and adequately training pharmacists on new tools and processes. Successful implementation also
depends on engaging end users and fostering their willingness to adopt the new technology. Table 11 outlines important
barriers that must be addressed to support successful Al integration.

Barriers

Integrating with complex
workflows

Interoperability

User training and support

Workflow customisation

Scalability

Collaboration and
communication

High initial costs

Change management

Detail

Integrating Al into complex pharmaceutical and clinical workflows involves several
considerations. This is a major challenge to Al adoption and implementation.38

Ensuring Al systems can seamlessly integrate with existing IT infrastructure and software
systems is crucial. This involves using standard protocols and APIs (application programming
interfaces) for communication. Also, having necessary resources (both human and economic)
is crucial.

Providing comprehensive training and support for end users is essential to facilitate smooth
adoption. This includes creating user-friendly interfaces and offering ongoing technical
support.

Al solutions should be tailored to fit the specific needs and processes of the pharmacy,
pharmaceutical company, organisation, or individuals who are using it. Customisation ensures
that Al tools complement existing workflows rather than disrupting them.

Al systems should be designed to scale with the organisation's growth. This involves planning
for increased data volumes, additional functionalities, and expanded user bases.

Promoting collaboration between Al experts, pharmacists, and other stakeholders is vital.
Clear communication channels help ensure that Al solutions address real-world challenges
effectively. Both technical expertise and industry know-how are needed to integrate both
worlds. Adding Al to a company should be supported by a whole culture pushing past barriers
and complications.

The development and deployment of Al solutions require substantial investment in
infrastructure, skilled personnel, and technology, which can be a deterrent for many
organisations.32 38

Integrating Al into existing workflows requires a cultural shift within organisations. Resistance
to change among staff and stakeholders can hinder the adoption process.3% 38

6.4 Selecting the right tool by establishing the pros and cons

Selecting the right tool is not always easy and often more than one Al solution could be effective. It may not always be

the functional capabilities of the tool that drive the decision, but other factors that come into play, such as the

technical environment in which it will be implemented, the cost of creating, building, or maintaining the model, the

level of transparency needed, regulations, or data access, among others.

When selecting the right tool, one must take the capabilities and limitations of the tool into account, but also the

implementation design. For example, building a generative Al tool to provide health information to patients, carries a

higher risk if the tool is patient-facing. However, if the model provides information to a clinician who first reviews it
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before it is provided to a patient, the risk is much lower. For the second scenario, the options of what tools can be
used are much broader because it may not be necessary to have all the guardrails in place right away that would be
needed for the first scenario.

Likewise, building a clinical decision support tool for drug dosing in a critical care environment involves different
considerations. Creating a model that recommends what dose a patient should receive each day is very different to
creating a model that alerts a clinician that the patient’s condition is changing (or is predicted to change soon) and
prompts the clinician to evaluate what dose adjustment is needed. Both scenarios would require different training
data to build the model because the output of each model would be different. For the first scenario, the output of the
model is a recommended dose (e.g., 5 mg). For the second scenario, the model output predicts whether or not a dose
adjustment will be required, which involves less risk because a clinician is still making the decision, but it is augmented
with Al. For the first scenario, a reinforcement learning model may be more appropriate, while a supervised learning
model may be more appropriate for the latter.

When using deep learning Al tools, there are many benefits, but also general limitations to keep in mind, such as data
dependency and limited model interpretability (see Table 12). Diving deeper, it is essential to weigh the strengths and
weaknesses of different Al models based on their type, learning style, and input data. Figure 2 outlines commonly
used Al models, while Table 13 provides a high-level summary of the pros and cons to consider for each model type,
depending on how the models are implemented and the ultimate goal of deployment.

Pros Cons
Adaptability: One can improve the performance of the Data dependency: Requires large amounts of data to train
model, as it is exposed to more data. effectively and accurately.

Versatility: Applicable to a wide range of problems, from = Opacity: Complex models like deep neural networks can be "black
image recognition to natural language processing boxes," making it hard to understand how decisions are made
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Al type

Reinforcement
learning models

I I I

Natural
language Supervised Large language
processing learning models models
models

Input data: Input data:
image tabular

Multi-modal
models
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Model

Generative
natural language
processing tools
(large language
models)

Examples (not all-inclusive)
Chatbot

e Acomputer
programme that
processes natural text
and simulates a
conversation with a
human3?

Content creation
e  Generates original
text based on a
prompt
Document classification
® Llabels a document
based on the topic or
other feature
Summarisation
®  Generates a summary

of a document or
prompt

Pros

Does not require input data to
be structured

Versatile

A single model can be used for
many different purposes

Many products/resources do
not require coding and are easy
to use

For general uses, many models
are ready to use “out of the
box” (e.g. does not require
additional training or fine
tuning)

Models can be connected to an
external data source

Cons

Not trained to be accurate.
Prone to hallucinations.

Contextual limitations:
Struggle with understanding
context, sarcasm, and
nuanced language

Bias: Can inadvertently learn
and propagate biases present
in training data

Can struggle with domain-
specific tasks

Model does not include any
information (e.g., current
events, new drugs, guideline
updates) that occurred after
its training data knowledge
cutoff date

Considerations

Usually, it is not practical to develop in-
house. Often must use an existing
foundation model.

Some models are proprietary while others
are open source

Performance varies across different
models. Some are more accurate at
certain skills than others (medical
knowledge, mathematics, reasoning, drug
information, etc.).

It is important to review how a model
performs against various benchmarks,
how it was trained, its training data cutoff,
and sources/risk for bias. However, not all
models share this data.

Requires using techniques such as
Retrieval Augmented Generation (RAG)
for the model to provide real-time
information or answer questions about a
specific document or internal knowledge
base.
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Model

Non-generative
natural language
processing tools

Multi-modal
generative Al
models

Examples (not all-inclusive) Pros

Classification: °

e  Labelling the topic of
a document °

Data extraction: °

e  Extracting a diagnosis
or medication list
from a clinical note .

Predictive:

®  Using hospital clinical
notes to estimate the
risk of a patient
needing end-of-life
care

Chatbots: °

e Acomputer
programme that °
simulates a
conversation with a
human by processing
text, images, audio
and/or video

Al assistants:

e  Multiple models
coordinating with
each other and/or
other tools to
complete a task

Cons

Developers have more control
over the model output

Can be built with less data

Does not require as much
computing power (able to be
run easier on individual devices)

Effective for narrow use cases

Can interact with models
through multiple channels

Models can be designed to
allow for follow-up questions
and back-and-forth dialogue
(e.g., after asking a model to
look at an image, the user can
ask follow-up questions based
on the model’s
description/response)

It takes longer to build;
requires Al expertise

Not generalisable and
specific. Models created for
one use are not able to be
used for other purposes
without retraining.

Often requires labeled data
for training, which can be
resource intensive to build

The same limitations for
generative Al apply to multi-
modal models

Considerations

Can be built in-house

Using pre-trained weights can help
improve accuracy

Depending on the underlying model and
use of neural networks or not, these
models may be more comprehended than
other black box models that use neural
networks

Not all models are truly multi-modal.
Some appear to be multi-modal by
combining several different models (e.g.,
text-generator, image-generator,
transcription model, etc.) together.

Considerations are similar to those for
generative natural language processing
tools above
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Model

Supervised
learning model -
image
recognition

Supervised
learning model -
tabular data

Examples (not all-inclusive)

Diagnostic:

e  Diagnosing or

characterising disease
features from medical

imaging 40-42

Risk predictions/forecasting:

e Creating a risk score
for the likelihood of a
patient being re-
admitted to hospital
after discharge*®

e Predicting drug
shortages?®

Pros

Many Al solutions have
demonstrated sufficient
accuracy, safety, and reliability
as determined by regulatory
bodies, such as the Food and
Drug Administration (FDA)*3

Many existing tools for
implementation

Can achieve high accuracy and
performance

A significant amount of
healthcare data already exists
in tabular format

Can be fine-tuned based on
local data

Can be used to map existing
data to a new metric or risk

score (e.g., mapping pedometer
data to a walking stability score)

Models are black boxes and
are not explainable

Can often only be used with
images of the same size, type
and resolution it was trained
on

May be tied to a specific
imaging device - if switching
devices, would require a new
model

Models are black boxes and
are not explainable

May not always perform
better than traditional
statistical methods (e.g.,
logistic regression)

Requires large amounts of
data to see performance
gains over simpler statistical
methods

Perpetuates pre-existing
errors and bias in data

Not generalisable

Considerations

If using a deep learning model for medical
imaging from a third-party vendor, check
if the model has been approved by the
applicable drug or device regulatory body
(e.g., FDA, USA; Health Sciences Authority,
Singapore; South African Health Products
Regulatory Authority (SAHPRA), South
Africa; INFARMED, Portugal; Medicines
and Healthcare Products Regulatory
Agency (MHRA), United Kingdom of Great
Britain and Northern Ireland)**

Not ideal for “recommendation” systems -
it does not truly predict the best action,
but predicts what actions were taken
historically (which may not always have
been correct)

It can be difficult and resource intensive
to scale. Every new use case typically
requires a new model and training data
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Model Examples (not all-inclusive) Pros

Reinforcement
learning model

Recommendation systems:

® Optimises a sequence
of actions/decisions
to achieve a long-
term goal

Can learn without explicit
supervision, making them
suitable for tasks where
annotated data is scarce or
unavailable

Designed to maximise a reward
that might be far in the future
(e.g., what series of actions
should be taken in a game to
win)

Excels in problems that require
a sequence of actions to
achieve a goal

These models can often have
unintended consequences if
the reward function is not
well defined

Black box

The model may make
unpredictable decisions to
“explore” other action
pathways, which could be
unsafe in a healthcare
environment

It is difficult to implement
guardrails in the model to
prevent it from making

unsafe recommendations

Considerations

Well-aligned to a healthcare environment
where the “reward” may be a long-term
outcome, rather than a short-term
benefit. For example, multiple treatment
decisions are made during a long
hospitalisation stay with the goal of
increasing the chance of the patient
surviving to discharge (long-term goal)

These models should be integrated with
knowledge-based systems to create safety
guardrails

Rigorous validation is needed to ensure
the right “reward” was chosen and that
the model isn’t accidentally optimising for
the wrong one
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As a summary to the information in the Al toolkit, the following checklist serves as a list of questions to help guide
discussions when pursuing implementation of an Al tool or solution. It is not meant to serve as a comprehensive
guide, but rather it should be used as a starting point. Each work environment or setting will have unique
requirements that must be taken into consideration.

Checklist
Defining the use case

O What problem is the Al tool meant to solve?

O Can the problem be solved with a non-Al-enabled solution or tool?

O Have all the appropriate stakeholders been engaged, including both decision-makers and end users?

O How will this tool fit into the existing workflow or how will the workflow be adjusted based on the tool?

Model selection

O Will the Al model be developed in-house or will a third-party vendor be used?

O If building the model in-house, does sufficient training data exist?

O If using a third-party foundation model, will it require fine-tuning (additional training) with local or domain-
specific data?

O If using a third-party Al-powered product or software, does it need to be evaluated and approved as safe and
effective by a regulatory body (e.g., FDA cleared software as a medical device)? If so, has it been?

O If using an existing model, how well does the model perform (see Table 3)? How does it compare with other
models or existing benchmarks?

Compliance

O Will the model have access to or utilise protected health information?

O Will using the model require data to be shared outside of the organisation? For example, does the model require
using an Application Programming Interface (API) or is the data shared with a cloud server external to the
organisation? If so, what limitations does this pose on what data can be included in the input of the model?

O What compliance regulations must be followed (see section on Compliance and ISO regulation)?

O Can the model be deployed locally?

Vendor selection

O If using a third-party vendor, do they provide a model card (as described in Table 2) or details about their training
data and model performance (see metrics in Table 3)?
O How often does the vendor audit model performance or retrain their model?
| Does the vendor provide updated performance metrics after any model updates are deployed?
Safety
O Have the potential failure modes of the model been outlined? What will the mitigation strategies be?
O How will the model be audited on a continual basis?
O How often does the model need to be re-validated based on potential drift?
O Based on the model’s training data, is the model less accurate for specific subpopulations? How will this be

mitigated?
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8.1 What do pharmacists need to know about Al?

For pharmacists and pharmacy teams in both hospital and community settings, the following competencies are
essential to harness the full potential of these technologies:

e Understanding of generative Al capabilities and limitations: Pharmacists must comprehend what generative
Al tools can and cannot do, including their scope, reliability, and the contexts in which they operate
optimally. This knowledge ensures appropriate reliance on Al for decision-making, avoiding over trust that
could lead to errors.

e Data literacy: The ability to interpret and evaluate data output from Al tools is crucial. Pharmacists need to
understand how to read, analyse, and make informed decisions based on the data generated by Al, which is
essential for accurate patient care and medication management.

e Ethical and legal considerations of Al use: Understanding the ethical implications and legal boundaries of
using Al in pharmacy practice is paramount. This includes patient privacy concerns, data security, and the
ethical use of Al in decision-making processes to ensure patient safety and compliance with regulations.

e  Critical thinking and decision-making: While Al can provide recommendations, the ultimate decision-making
responsibility lies with the pharmacist. The ability to critically assess Al-generated advice, considering the
unigue contexts and needs of each patient, is essential for effective pharmacy practice.

e Communication skills: Pharmacists must effectively communicate Al-generated information to patients and
healthcare teams. This includes translating complex Al data into understandable advice and ensuring that Al-
supported decisions are transparent and justifiable.

e Continuous learning and adaptability: The field of Al is rapidly evolving; therefore, pharmacists need to
commit to ongoing education and adaptation to new technologies. This continuous learning ensures that
pharmacy practice remains at the cutting edge, using the most current Al tools to improve patient care.

e Collaborative skills for interdisciplinary teams: Working with interdisciplinary teams, including IT
professionals, data scientists, and other healthcare providers, is crucial for implementing and optimising Al
tools in pharmacy practice. Effective collaboration ensures that Al implementations are well-coordinated and
meet the diverse needs of healthcare delivery.

e Patient-centred care: Pharmacists must ensure that Al tools are used in a way that prioritises patient needs
and outcomes. This involves using Al to personalise medication management and support, enhancing the
quality of care delivered to patients.

e Innovation and creativity: Finally, as in all ecosystems that work with Al, pharmacists should cultivate an
innovative mindset, seeking creative ways to apply Al in pharmacy practice. This includes developing new
workflows, patient care strategies, and management practices enhanced by Al, driving forward the pharmacy
field.

Each of these competencies is critical for pharmacists and pharmacy teams to effectively integrate generative Al tools
into their practice. Together, they enable the delivery of high-quality, efficient, and personalised patient care,
ensuring that pharmacy professionals remain at the forefront of healthcare innovation.
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8.2 Knowledge and skills for Al

Integrating generative Al tools into pharmacy practice represents a transformative shift towards more efficient and
effective healthcare delivery. In pharmacy practice, Al systems are increasingly used to optimise medication
management, enhance prescription accuracy, and streamline inventory control. For instance, Al-powered prescription
verification systems can automatically detect potential errors in medication orders, reducing the burden of manual
verification tasks for pharmacists. While this improves efficiency and patient safety, it also affects the traditional role
of pharmacists in overseeing medication dispensing processes and providing clinical care. Pharmacists need to adapt
to working alongside Al systems, requiring new skills in managing and interpreting Al-generated data.

Pharmacists eager to learn more about Al and its applications in healthcare and pharmacy practice have a variety of
learning environments at their disposal. Online courses and webinars offered by institutions such as Coursera, edX,
Udemy, and universities provide foundational knowledge on Al, its principles, and healthcare applications and are
easily accessible.

In Asia, Coursera China offers tailored courses in partnership with top Chinese universities, focusing on Al in
healthcare with content available in Mandarin. NUS-ISS (National University of Singapore, Institute of Systems
Science) provides specialised programmes on Al in healthcare, catering to professionals in Singapore and surrounding
regions. K-MOOC (Korean Massive Open Online Course), supported by the Ministry of Education in South Korea, offers
Al-related courses with a focus on applications in healthcare and pharmacy, available in Korean. Additionally, NTU’s
Nanyang Technological University in Singapore offers executive education and online learning modules on Al
applications in healthcare, targeting healthcare professionals across Asia. These platforms provide pharmacists with
region-specific insights and skills to effectively integrate Al into their practice.

Professional organisations, like the American Society of Health-System Pharmacists (ASHP) and the International
Pharmaceutical Federation (FIP), offer specialised training sessions, workshops, and conferences focused on Al in
pharmacy practice. Academic journals and publications often feature articles on Al research and case studies, keeping
pharmacists updated on the latest advancements and practical applications.

Collaboration with multidisciplinary teams, including data scientists and healthcare professionals through seminars
and hands-on projects, can provide practical insights and real-world experience. Additionally, participation in Al-
focused forums and discussion groups, both online and within professional networks, fosters an environment of
continuous learning and knowledge sharing.

These diverse educational resources can help equip pharmacists with the skills and understanding needed to
effectively integrate Al into their practice, to enhance patient care and optimise healthcare delivery.
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Term

Algorithm

Application

Program Interface
(API)

Artificial
Intelligence (Al)
Artificial general

intelligence (AGI)

Artificial
pharmacology
intelligence (API)
Big data

Data science

Deep learning

Deployment

Generative Al
(pharmacy)

Large language
model (LLM)

Machine learning
(ML)

Natural language
generation (NLG)
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Definition

A sequential procedure or set of rules, designed to solve a particular problem or perform a specific task. It
is a clear, finite sequence of instructions that takes an input, processes it, and produces an output.

A set of guidelines and protocols that enable different software applications to communicate with one
another. It outlines the methods and data formats that applications use to request and exchange
information, allowing for smooth interaction. APIs are frequently used to integrate systems, services, or
applications, helping with tasks such as data retrieval, invoking services, and sharing functionalities.

A branch of computer science dedicated to creating systems capable of performing tasks that typically
require human intelligence, such as learning, reasoning, problem-solving, and pattern recognition.

A type of Al that has the human-like ability to understand, learn, and apply knowledge across a broad
range of tasks, similar to human cognitive abilities. AGI can adapt to new challenges, reason through
problems, and transfer knowledge from one domain to another.

The use of advanced artificial intelligence techniques to analyse and interpret data related to
pharmacology. It aims to enhance the understanding of drug interactions, drug discovery, and the effects
of substances on biological systems.

A vast collection of data that are too big for traditional data management systems to process. Al uses big
data to enhance model efficiencies in learning and analysis.

An interdisciplinary field focused on extracting insights and knowledge from data through a variety of
techniques, such as statistical analysis, data mining, machine learning, and data visualisation.

Involves the use of large, multi-layer artificial neural networks that process data using continuous (real
number) representations. It offers improved generalisation from small datasets and scales more efficiently
with large datasets and computing resources.

The process of integrating an Al model into a production environment to make predictions and analyses
based on data.

Generative Al in pharmacy refers to the application of advanced Al techniques that can create new data,
solutions, or insights based on existing information. These technologies leverage machine learning models,
particularly generative models, to enhance various aspects of pharmaceutical practice and research.

LLMs are a specific type of generative Al model focused on producing human-like text. While generative Al
refers to a broad range of Al techniques and models designed to create new content—whether text,
images, audio, or video—LLMs specialise in text generation.

A branch of Al that focuses on how computer agents can enhance their perception, knowledge, reasoning,
or actions through experience or data. Machine learning integrates concepts from fields such as computer
science, statistics, psychology, neuroscience, economics, and control theory.

A branch of artificial intelligence dedicated to developing systems that automatically create human-like
text from structured data. NLG allows computers to generate written content, including reports,
summaries, or responses, in natural language. This process transforms data, facts, or insights into coherent
and meaningful sentences or paragraphs, improving how humans understand and interact with
information. NLG is widely applied in areas such as chatbots, automated reporting, content creation, and
personalised communication.
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Natural language A field of artificial intelligence focused on enabling computers to understand, interpret, and generate
processing (NLP) human language. It involves the development of algorithms and models that allow machines to process
and analyse text or speech data in a way that is meaningful and useful.

Neural network Computer models inspired by the human brain's structure. These interconnected artificial neurons,
organised in layers, learn from data to make predictions in machine learning, underpinning deep learning.

Prompt The input that a user puts into to an Al model to receive a specific response.
Retrieval An advanced technique in natural language processing that combines information retrieval with text
augmented generation.

generation (RAG)

Robotic process A rival technology that uses software robots to automate repetitive tasks based on fixed rules and inputs,
automation (RPA) often performing tasks more efficiently than humans.
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